Відмінності між версіями «Циліндричні функції»
Матеріал з Вікі ЦДУ
Рядок 1: | Рядок 1: | ||
'''<font color='red' size=3> Циліндричними функціями - </font>''' називається розвиток рівняння Беселя. У 17 пункті отримано першу циліндричну функцію - функція Беселя I роду у вигляді степеневого ряду. Цю функцію можна записати через γ-функцію: | '''<font color='red' size=3> Циліндричними функціями - </font>''' називається розвиток рівняння Беселя. У 17 пункті отримано першу циліндричну функцію - функція Беселя I роду у вигляді степеневого ряду. Цю функцію можна записати через γ-функцію: | ||
− | :<math>{ | + | :<math>{J_{m}(z)}=\int_0^\infty {e}^{-t}{t}^{z+1}dt\Rightarrow {I_m(z)}=(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!J(m+k+1)} </math> |
:Ще однією циліндричною функцією( розв'язком рівняння Беселя) є функція Беселя I роду | :Ще однією циліндричною функцією( розв'язком рівняння Беселя) є функція Беселя I роду | ||
:Функція Неймана (або Беселя I роду): | :Функція Неймана (або Беселя I роду): | ||
:<math>{N_m(z)}=\frac{1}{sinm\pi}[J_m(z)cos\pi-J_{-m}(z)]</math> якщо <math>m \not\in \mathbf{Z}</math> | :<math>{N_m(z)}=\frac{1}{sinm\pi}[J_m(z)cos\pi-J_{-m}(z)]</math> якщо <math>m \not\in \mathbf{Z}</math> | ||
:<math>{N_m(z)}={(-1)}^mN_{-m}(z)=\frac{2}{\pi}J_m(z)(\ln\frac{z}{2}+c)-\frac{1}{\pi}(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!(m+k)!}(\frac{z}{2})^2k(\sum^{k}_{i=1}\frac{1}{i}+\sum^{m+k}_{i=1}{\frac{1}{i}})-{\frac{1}{\pi}}{(\frac{z}{2})^{-m}}\sum^{m-1}_{k=0}\frac{(m-k-1)!}{k!}(\frac{z}{2})^2k</math> | :<math>{N_m(z)}={(-1)}^mN_{-m}(z)=\frac{2}{\pi}J_m(z)(\ln\frac{z}{2}+c)-\frac{1}{\pi}(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!(m+k)!}(\frac{z}{2})^2k(\sum^{k}_{i=1}\frac{1}{i}+\sum^{m+k}_{i=1}{\frac{1}{i}})-{\frac{1}{\pi}}{(\frac{z}{2})^{-m}}\sum^{m-1}_{k=0}\frac{(m-k-1)!}{k!}(\frac{z}{2})^2k</math> | ||
+ | :якщо <math>m \not\in \mathbf{Z}</math> <math>c=-\int_0^\infty {e}^{-t}lntdt=0.577216</math>, с - стала Ейлера-Маскероні. | ||
+ | : На основі функцій Беселя I та II роду можна побудувати іншу пару циліндричних функцій | ||
+ | : Функція Генкеля I роду: | ||
+ | :<math>{H_m}^{(1)}(z)=J_{m}(z)+iN_{m}(z)</math> |
Версія за 21:35, 17 травня 2010
Циліндричними функціями - називається розвиток рівняння Беселя. У 17 пункті отримано першу циліндричну функцію - функція Беселя I роду у вигляді степеневого ряду. Цю функцію можна записати через γ-функцію:
- Неможливо розібрати вираз (невідома помилка): {J_{m}(z)}=\int_0^\infty {e}^{-t}{t}^{z+1}dt\Rightarrow {I_m(z)}=(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!J(m+k+1)}
- Ще однією циліндричною функцією( розв'язком рівняння Беселя) є функція Беселя I роду
- Функція Неймана (або Беселя I роду):
- Неможливо розібрати вираз (невідома помилка): {N_m(z)}=\frac{1}{sinm\pi}[J_m(z)cos\pi-J_{-m}(z)]
якщо Неможливо розібрати вираз (невідома помилка): m \not\in \mathbf{Z}
- Неможливо розібрати вираз (невідома помилка): {N_m(z)}={(-1)}^mN_{-m}(z)=\frac{2}{\pi}J_m(z)(\ln\frac{z}{2}+c)-\frac{1}{\pi}(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!(m+k)!}(\frac{z}{2})^2k(\sum^{k}_{i=1}\frac{1}{i}+\sum^{m+k}_{i=1}{\frac{1}{i}})-{\frac{1}{\pi}}{(\frac{z}{2})^{-m}}\sum^{m-1}_{k=0}\frac{(m-k-1)!}{k!}(\frac{z}{2})^2k
- якщо Неможливо розібрати вираз (невідома помилка): m \not\in \mathbf{Z}
Неможливо розібрати вираз (невідома помилка): c=-\int_0^\infty {e}^{-t}lntdt=0.577216
, с - стала Ейлера-Маскероні.
- На основі функцій Беселя I та II роду можна побудувати іншу пару циліндричних функцій
- Функція Генкеля I роду:
- Неможливо розібрати вираз (невідома помилка): {H_m}^{(1)}(z)=J_{m}(z)+iN_{m}(z)