Відмінності між версіями «Циліндричні функції»
Матеріал з Вікі ЦДУ
Рядок 1: | Рядок 1: | ||
'''<font color='red' size=3> Циліндричними функціями - </font>''' називається розвиток рівняння Беселя. У 17 пункті отримано першу циліндричну функцію - функція Беселя I роду у вигляді степеневого ряду. Цю функцію можна записати через γ-функцію: | '''<font color='red' size=3> Циліндричними функціями - </font>''' називається розвиток рівняння Беселя. У 17 пункті отримано першу циліндричну функцію - функція Беселя I роду у вигляді степеневого ряду. Цю функцію можна записати через γ-функцію: | ||
:<math>{J_m(z)}=\int_0^\infty {e}^{-t}{t}^{z+1}\Rightarrow {I_m(z)}=(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!J(m+k+1)} </math> | :<math>{J_m(z)}=\int_0^\infty {e}^{-t}{t}^{z+1}\Rightarrow {I_m(z)}=(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!J(m+k+1)} </math> | ||
+ | :Ще однією циліндричною функцією( розв'язком рівняння Беселя) є функція Беселя I роду | ||
+ | : |
Версія за 18:28, 17 травня 2010
Циліндричними функціями - називається розвиток рівняння Беселя. У 17 пункті отримано першу циліндричну функцію - функція Беселя I роду у вигляді степеневого ряду. Цю функцію можна записати через γ-функцію:
- Неможливо розібрати вираз (невідома помилка): {J_m(z)}=\int_0^\infty {e}^{-t}{t}^{z+1}\Rightarrow {I_m(z)}=(\frac{z}{2})^m\sum^{\infty}_{k=1}\frac{(-1)^k}{k!J(m+k+1)}
- Ще однією циліндричною функцією( розв'язком рівняння Беселя) є функція Беселя I роду