Відмінності між версіями «Мікросхема»
Roshen (обговорення • внесок) |
Roshen (обговорення • внесок) |
||
Рядок 1: | Рядок 1: | ||
− | |||
Ісмієв Роман | Ісмієв Роман | ||
− | [[Файл:Emblema-MIT.png|80px|справа]] | + | |
+ | [[Файл:Emblema-MIT.png|80px|справа]] | ||
+ | |||
==Загальний опис (принцип дії)== | ==Загальний опис (принцип дії)== | ||
− | + | ||
+ | [[Файл:KilbyJack.jpg|мини|справа|200px|Джек Кілбі, лауреат Нобелівської премії з фізики в 2000 році за винахід інтегральної схеми в 1958 році ]] | ||
+ | |||
+ | Мікросхема, інтегральна мікросхема - електронна схема, що реалізована у вигляді напівпровідникового кристалу (чіпу) та виконує певну функцію. | ||
+ | |||
+ | Чіп - напівпровідникова структура, на поверхні якої сформовані контактні площинки. Часто під інтегральною схемою (ІС) розуміють власне кристал або плівку з електронною схемою, а під мікросхемою (МС) - ІС в корпусі. | ||
+ | |||
+ | Винахід мікросхем розпочався з вивчення властивостей тонких оксидних плівок, що проявляються в ефекті поганої електропровідності при невеликій електричній напрузі. Проблема полягала в тому, що в місці зіткнення двох металів не відбувалося електричного контакту або він мав полярні властивості. Глибокі вивчення цього феномену привели до винаходу діодів, а пізніше до транзисторів і інтегральних мікросхем. | ||
==Історична довідка== | ==Історична довідка== | ||
− | + | ||
+ | Роберт Нойс і Джек Кілбі однаковою мірою вважаються авторами головного винаходу століття інформаційних технологій. Не знаючи один одного, вони вирішили проблему мінімізації дискретних елементів монтажної плати комп’ютера та перенесення їх на пластину з кремнію (Нойс) і германію (Кілбі). Це значно збільшило продуктивність комп’ютера й одночасно скоротило його вартість. Інтегральна схема, як і раніше, залишається ключовим досягненням ери електроніки. | ||
+ | У 1959 році вони окремо один від одного одержали патенти на свої винаходи - почалося протистояння двох компаній, що закінчилося мирним договором і створенням спільної ліцензії на виробництво чіпів. Після того як у 1961 році Fairchild Semiconductor Corporation пустила чіпи у вільний продаж, їхній відразу стали використовувати у виробництві калькуляторів і комп'ютерів замість окремих транзисторів, що дозволило значно зменшити розмір і збільшити продуктивність. | ||
==Технічні характеристики== | ==Технічні характеристики== | ||
− | + | ||
+ | За конструктивно-технологічним виконанням мікросхеми діляться на напівпровідникові і гібридно-плівкові. Напівпровідникові мікросхеми мають в своїй основі монокристал напівпровідникового матеріалу (зазвичай кремнію), в поверхневому шарі якого методами літографії і виборчого легування створюються транзистори, діоди, резистори та конденсатори, а з'єднання між ними формуються по поверхні кристала за допомогою тонкоплівкової технології. Напівпровідникові мікросхеми можуть бути однокристальні (монолітними) і багатокристальні (мікрозборки). Однокристальна мікросхема може мати індивідуальний герметизований корпус із зовнішніми висновками для монтажу на комутаційній платі, або бути безкорпусною і входити до складу мікросхеми. | ||
+ | |||
+ | Багатокристальна мікросхема (мікрозбірка) являє собою сукупність безкорпусних мікросхем, змонтованих на загальній комутаційній платі. В якості компонентів у мікрозбірці можуть бути безкорпусні резистори та розв'язувальні конденсатори. Внаслідок високої насиченості зв'язків комутаційна плата виконується багаторівнево і, таким чином, є мініатюрним аналогом багатошарової друкованої плати. При виготовленні комутаційної плати може бути використана як тонкоплівкова, так і товстоплівкова технології. | ||
+ | |||
+ | Гібридно-плівкові мікросхеми включають в себе плівкові пасивні елементи (резистори і конденсатори), комутаційні провідники, нанесені безпосередньо на підкладку із ізоляційного матеріалу, і безкорпусні напівпровідникові кристали (транзистори, діоди, діодні матриці, нескладні мікросхеми), монтовані на тій же підкладці. Пасивні елементи і провідники можуть бути виконані по тонкоплівковій або товстоплівковій технології. | ||
+ | |||
+ | Запропоновані наступні назви мікросхем у залежності від ступеня інтеграції: | ||
+ | |||
+ | * МІС - мала інтегральна схема (до 100 елементів у кристалі); | ||
+ | * СІС - середня інтегральна схема (до 1 000); | ||
+ | * ВІС - велика інтегральна схема (до 10 000); | ||
+ | * ЗВІС - надвелика інтегральна схема (до 1 мільйона); | ||
+ | * УВІС - ультравелика інтегральна схема (до 1 мільярда); | ||
+ | * ГВІС - гігавеликі (більш 1 мільярда). | ||
==Сфера застосування == | ==Сфера застосування == | ||
− | + | ||
+ | Інтегральні мікросхеми застосовуються у всіх областях сучасної техніки де використовують напівпровідникові прилади. Малі габарити і маси, велика надійність, висока стабільність і відтворюваність параметрів, низький рівень власних шумів, мале споживання енергії дозволяють ІМС успішно конкурувати з схемами, зібраними на дискретних елементах. | ||
+ | |||
+ | Особливо велике значення інтегральних мікросхем для подальшого розвитку обчислювальної техніки, автоматики, телевимірювальної техніки, систем управління технологічними процесами в промисловості і сільському господарстві, дротяного, радіо- і телевізійного зв'язку, всіх видів транспорту. Мікроелектроніка дозволила розширити теоретичні і експериментальні дослідження в космосі, біології, фізиці. Вона застосовується і в автоматах, що працюють на Місяці і Марсі, і при вивченні біострумів в клітках живого організму. Мікроелектроніка дозволила створити приймач радіопередач, що вміщується в дужці окулярів, телевізор, вбудований в браслет для ручного годинника, кишенькову обчислювальну машину та інше. | ||
==Фото, відео-матеріали== | ==Фото, відео-матеріали== | ||
− | + | ||
+ | [[Файл:Qwertyui123.jpg|300px|ліворуч]] | ||
+ | [[Файл:Qwertyui13.jpg|300px|праворуч]] | ||
+ | [[Файл:Qwertyui12.jpeg|200px|центр]] | ||
==Список використаних джерел== | ==Список використаних джерел== |
Версія за 21:51, 29 березня 2017
Ісмієв Роман
Зміст
Загальний опис (принцип дії)
Мікросхема, інтегральна мікросхема - електронна схема, що реалізована у вигляді напівпровідникового кристалу (чіпу) та виконує певну функцію.
Чіп - напівпровідникова структура, на поверхні якої сформовані контактні площинки. Часто під інтегральною схемою (ІС) розуміють власне кристал або плівку з електронною схемою, а під мікросхемою (МС) - ІС в корпусі.
Винахід мікросхем розпочався з вивчення властивостей тонких оксидних плівок, що проявляються в ефекті поганої електропровідності при невеликій електричній напрузі. Проблема полягала в тому, що в місці зіткнення двох металів не відбувалося електричного контакту або він мав полярні властивості. Глибокі вивчення цього феномену привели до винаходу діодів, а пізніше до транзисторів і інтегральних мікросхем.
Історична довідка
Роберт Нойс і Джек Кілбі однаковою мірою вважаються авторами головного винаходу століття інформаційних технологій. Не знаючи один одного, вони вирішили проблему мінімізації дискретних елементів монтажної плати комп’ютера та перенесення їх на пластину з кремнію (Нойс) і германію (Кілбі). Це значно збільшило продуктивність комп’ютера й одночасно скоротило його вартість. Інтегральна схема, як і раніше, залишається ключовим досягненням ери електроніки. У 1959 році вони окремо один від одного одержали патенти на свої винаходи - почалося протистояння двох компаній, що закінчилося мирним договором і створенням спільної ліцензії на виробництво чіпів. Після того як у 1961 році Fairchild Semiconductor Corporation пустила чіпи у вільний продаж, їхній відразу стали використовувати у виробництві калькуляторів і комп'ютерів замість окремих транзисторів, що дозволило значно зменшити розмір і збільшити продуктивність.
Технічні характеристики
За конструктивно-технологічним виконанням мікросхеми діляться на напівпровідникові і гібридно-плівкові. Напівпровідникові мікросхеми мають в своїй основі монокристал напівпровідникового матеріалу (зазвичай кремнію), в поверхневому шарі якого методами літографії і виборчого легування створюються транзистори, діоди, резистори та конденсатори, а з'єднання між ними формуються по поверхні кристала за допомогою тонкоплівкової технології. Напівпровідникові мікросхеми можуть бути однокристальні (монолітними) і багатокристальні (мікрозборки). Однокристальна мікросхема може мати індивідуальний герметизований корпус із зовнішніми висновками для монтажу на комутаційній платі, або бути безкорпусною і входити до складу мікросхеми.
Багатокристальна мікросхема (мікрозбірка) являє собою сукупність безкорпусних мікросхем, змонтованих на загальній комутаційній платі. В якості компонентів у мікрозбірці можуть бути безкорпусні резистори та розв'язувальні конденсатори. Внаслідок високої насиченості зв'язків комутаційна плата виконується багаторівнево і, таким чином, є мініатюрним аналогом багатошарової друкованої плати. При виготовленні комутаційної плати може бути використана як тонкоплівкова, так і товстоплівкова технології.
Гібридно-плівкові мікросхеми включають в себе плівкові пасивні елементи (резистори і конденсатори), комутаційні провідники, нанесені безпосередньо на підкладку із ізоляційного матеріалу, і безкорпусні напівпровідникові кристали (транзистори, діоди, діодні матриці, нескладні мікросхеми), монтовані на тій же підкладці. Пасивні елементи і провідники можуть бути виконані по тонкоплівковій або товстоплівковій технології.
Запропоновані наступні назви мікросхем у залежності від ступеня інтеграції:
- МІС - мала інтегральна схема (до 100 елементів у кристалі);
- СІС - середня інтегральна схема (до 1 000);
- ВІС - велика інтегральна схема (до 10 000);
- ЗВІС - надвелика інтегральна схема (до 1 мільйона);
- УВІС - ультравелика інтегральна схема (до 1 мільярда);
- ГВІС - гігавеликі (більш 1 мільярда).
Сфера застосування
Інтегральні мікросхеми застосовуються у всіх областях сучасної техніки де використовують напівпровідникові прилади. Малі габарити і маси, велика надійність, висока стабільність і відтворюваність параметрів, низький рівень власних шумів, мале споживання енергії дозволяють ІМС успішно конкурувати з схемами, зібраними на дискретних елементах.
Особливо велике значення інтегральних мікросхем для подальшого розвитку обчислювальної техніки, автоматики, телевимірювальної техніки, систем управління технологічними процесами в промисловості і сільському господарстві, дротяного, радіо- і телевізійного зв'язку, всіх видів транспорту. Мікроелектроніка дозволила розширити теоретичні і експериментальні дослідження в космосі, біології, фізиці. Вона застосовується і в автоматах, що працюють на Місяці і Марсі, і при вивченні біострумів в клітках живого організму. Мікроелектроніка дозволила створити приймач радіопередач, що вміщується в дужці окулярів, телевізор, вбудований в браслет для ручного годинника, кишенькову обчислювальну машину та інше.