Відмінності між версіями «Навчальний курс "Теорія міри та інтегралу" Гаєвський М.В.»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
 
(не показані 4 проміжні версії цього учасника)
Рядок 60: Рядок 60:
  
 
=Графік навчання=
 
=Графік навчання=
 
+
{| class="wikitable" border="1"
 +
|-
 +
! День, № пари
 +
! група
 +
! аудиторія
 +
|-
 +
|  пн, 1
 +
|  37
 +
|  309
 +
|-
 +
|  ср, 2
 +
|  37
 +
|  412
 +
|}
 
На тиждень заплановано опрацювати 4 години  
 
На тиждень заплановано опрацювати 4 години  
  
Рядок 188: Рядок 201:
 
1. [http://www.mon.gov.ua МОНУ]
 
1. [http://www.mon.gov.ua МОНУ]
  
2. [http://www.techlibrary.ru технічна быблыотека]
+
2. [http://www.techlibrary.ru технічна бiблiотека]
  
 
3. [http://www.nbuv.gov.ua НБУ ім. Вернадського]
 
3. [http://www.nbuv.gov.ua НБУ ім. Вернадського]

Поточна версія на 12:07, 6 листопада 2015

Назва курсу

Теорія міри та інтеграла (ТМІ)


Integral example.svg.png


Курс ТМІ є важливим фундаментальним курсом, без освоєння якого не можливо опанувати різні методи дослідження багатьох явищ і процесів, наприклад, фінансова аналітика, прогнозування ймовірності фінансової стабільності різних економічних суб'єктів і систем тощо.

Стох аналіз.jpeg

Програма з курсу «Теорія міри та інтегралу» відповідає навчальному плану для держуніверситетів. Курс «Теорія міри та інтегралу» є необхідною складовою частиною базової теоретичної підготовки студента-математика та основою для подальшого вивчення спеціальний дисциплін.

Він дає можливість засвоїти основні теоретичні відомості з абстрактної теорії міри та теорії інтегралу Лебега, а також практичні вміння та навички що до обчислення міри множин на прямій та інтегрування функцій однієї змінної. Курс «Теорія міри та інтегралу» розрахований для студентів 3 курсу математичного факультету спеціальності «Статистика».

Робоча програма курсу

Мета та завдання навчального курсу

Мета полягає у викладенні основних понять і фактів сучасної теорія міри та інтегралу на базі теорії множин, вищої алгебри та математичного аналізу.

Finance1.jpeg

Завданням є розглянути основні поняття теорії міри, вимірних функцій та інтегралу, навчити типовим методам обчислення мір множин, інтегралів від вимірних функцій та застосуванню цих методів в різних розділах математики, сприяти засвоєнню знань, необхідних для подальшого вивчення теорії інтегральних рівнянь та функціонального аналізу.

У результаті вивчення навчального курсу студент повинен

знати:

  • поняття міри та вимірних множин;
  • поняття півкільця, кільця, алгебри та сигма- кільця, алгебри;
  • борелівську класифікацію множин;
  • алгоритм побудови міри Лебега;
  • означення вимірної функції;
  • властивості вимірних функцій;
  • означення та способи обчислення інтегралу Лебега, невизначеного інтеграла Лебега, інтегралів Лебега-Стільтьєса;
  • основні твердження про збіжність інтегралів та вимірних функцій.

вміти:

  • перевіряти замкненість, відкритість, вимірність множин, належність до відповідних борелівських класів;
  • перевіряти вимірність та інтегрованість за Лебегом функцій;
  • обчислювати міру Лебега, Лебега-Стільтьєса різних множин;
  • визначати значення інтеграла Лебега, Лебега-Стільтьєса в різних випадках;
  • знаходити зв'язок з інтегралом Рімана;
  • застосовувати теорему Фубіні.

Автор (автори) курсу

Гаєвський Микола Вікторович


Учасники

студенти 37 групи

Викладач Гаєвський Микола Вікторович Отримати консультацію викладача

Графік навчання

День, № пари група аудиторія
пн, 1 37 309
ср, 2 37 412

На тиждень заплановано опрацювати 4 години


Структура

1. Кільце, алгебра, півкільце. Їхні приклади і властивості. Теорема про кільце, породжене півкільцем. Борельові множини. - 2 год.

2. Основні класи функцій множин. Міра на півкільці, елементарні властивості міри. Теореми про неперервність міри. - 2 год.

3. Продовження міри з півкільця на породжене кільце. Зовнішня міра та її основні властивості. Міра на кільці. - 2 год.

4. Вимірність за Каратеодорі. Теорема Каратедорі про клас вимірних множин. Вимірність за Каратеодорі елементів вихідного кільця. Єдиність продовження міри з кільця на породжене сигма-кільце. Наближення значень міри її значеннями на кільці. - 2 год.

5. Міри Жордана, Лебега на прямій і на площині. - 2 год.

6. Міра Лебега–Стілтьєса - 2 год.


Практичне заняття 1. Класи множин — 2 год.

Практичне заняття 2. Класи множин. Адитивні функції множин — 2 год.

Практичне заняття 3. Міра та її властивості — 2 год.

Практичне заняття 4. Зовнішня міра. Вимірні множини. Продовження міри — 2 год.

Практичне заняття 5. Міра Лебега на прямій — 2 год.

Практичне заняття 6. Міра Лебега в просторі Міра Лебега-Стілтьєса на прямій — 2 год.

Практичне заняття 7. Контрольна робота — 2 год.


1. Вимірні функції, критерій вимірності (дійсної) функції. Арифметичні дії над вимірними функціями. Вимірність послідовності вимірних функцій. — 2 год.

2. Прості вимірні функції. Апроксимація вимірних функцій простими. Властивості, що виконуються майже скрізь. Збіжність майже скрізь, теореми про єдиність та про вимірність границі. Теорема Єгорова. Збіжність за мірою. — 2 год.

3. Означення інтеграла Лебега. Теорема про наближення значення інтеграла інтегралами від простих функцій. — 2 год.

4. Елементарні властивості інтеграла Лебега. — 2 год.

5. сигма–адитивність інтеграла Лебега як функції множин. абсолютна неперервність інтеграла Лебега— 2 год.

6. Граничний перехід під знаком інтеграла Лебега. Теорема про монотонну збіжність. Теорема Б.Леві. Лема Фату. Теорема Лебега про мажоровану збіжність. — 2 год.

7. Порівняння інтеграла Рімана та інтеграла Лебега. Критерій Лебега інтегровності за Ріманом. Порівняння невласного інтеграла Рімана та інтеграла Лебега. Інтеграл Лебега–Стілтьєса на прямій. Застосування. — 4 год.

8. Інтеграл Лебега від невід’ємної необмеженої функції. Сумовні функції довільного знака. — 2 год.

9. Неперервність та диференційовність інтеграла Лебега, що залежить від параметра. Заміна змінної в інтегралі Лебега. — 6 год.

10. Подвійні та повторні інтеграли. Теорема Фубіні. — 2 год.

11. Простори сумовних функцій. — 2 год.


Практичне заняття 8. Вимірні функції та їх властивості. — 2 год.

Практичне заняття 9. Еквівалентні функції. Збіжність майже скрізь — 2 год.

Практичне заняття 10. Збіжність за мірою послідовності функцій — 2 год.

Практичне заняття 11. Означення інтеграла Лебега — 2 год.

Практичне заняття 12. Властивості інтеграла Лебега — 6 год.

Практичне заняття 13. Граничний перехід під знаком інтеграла Лебега — 2 год.

Практичне заняття 14. Контрольна робота — 2 год.

Зміст курсу

Змістовий модуль 1. Основні класи множин. Міра та її властивості

Основні класи множин. Міра та її властивості

Теоретичний матеріал

Лекція № 1. Кільце, алгебра, півкільце. Їхні приклади і властивості. Теорема про кільце, породжене півкільцем. Борельові множини

Лекція № 2. Основні класи функцій множин. Міра на півкільці, елементарні властивості міри. Теореми про неперервність міри

Практичні завдання

Практичне заняття 1. Класи множин

Практичне заняття 2. Класи множин. Адитивні функції множин

Самостійна робота

Самостійна робота №1

Самостійна робота №2

Ресурси

Рекомендована література

а) основна

1. Дороговцев А.Я. Элементы общей теории меры и интеграла. — К.: Факт, 2007. — 164 с.

2. Колмогоров А.М., Фомін С.В. Елементи теорії функцій та функціонального аналізу. — К.: Наукова думка, 1977. — 578 с.

3. Натансон І.П. Основи теорії функцій дійсної змінної. К., 1950. - 546с.

4. Березанский Ю. М., Ус Г.Ф., Шефтель З. Г. Функциональный анализ. Курс лекций. — К.: Выща школа, 1990.— 600 с.

б) додаткова

5. Завдання до практичних занять з теорії міри та інтеграла для студентів спеціальностей „математика і „статистика” механіко-математичного факультету / Укладачі А.Я.Дороговцев, С.Д.Івасішен, О.Ю.Константінов, О.Г.Кукуш, О.О.Курченко, О.Н.Нестеренко, Т.О.Петрова, А.В.Чайковський. — К.: ВПЦ „Київський університет”, 2003. — 89 c.

6. Методы решения задач по функциональному анализу: Учебное пособие / В.В.Городецкий, Н.И.Нагнибида, П.П.Настасиев. — К.: Выща школа., 1990. — 479 с.

7. Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа.— М.: Наука, 1979.— 382 с.

8. Натансон И.П. Теория функций вещественной переменной.— М.: Наука, 1974. — 480 с.

9. Федоров В. М. Курс функционального анализа. - СПб.: Лань, 2005. - 352 с.



Інформаційні ресурси

1. МОНУ

2. технічна бiблiотека

3. НБУ ім. Вернадського

4. math.ru

5. exponenta.ru


---