Відмінності між версіями «Умови оптимальності плану першого етапу задачі стохастичного програмування.»
Рядок 13: | Рядок 13: | ||
<font size=3> '''Доведення:''' </font> | <font size=3> '''Доведення:''' </font> | ||
− | <font size=3> Оскільки <math>\ x* </math> - оптимальний план, а x – план двохетапної задачі, то <math>Q(x^*)\leq{Q(x)}</math>, тобто | + | <font size=3> Оскільки <math>\ x* </math> - оптимальний план, а <math>\ x </math> – план двохетапної задачі, то <math>Q(x^*)\leq{Q(x)}</math>, тобто |
<math>M\{cx^*+z^*(A,b,x^*)(b-Ax^*)\}\leq{M\{cx+z^*(A,b,x)(b-Ax)\}}</math> (2) </font> | <math>M\{cx^*+z^*(A,b,x^*)(b-Ax^*)\}\leq{M\{cx+z^*(A,b,x)(b-Ax)\}}</math> (2) </font> | ||
Рядок 34: | Рядок 34: | ||
<font size=3> '''Теорема доведена.''' </font> | <font size=3> '''Теорема доведена.''' </font> | ||
− | <font size=3> Теорема 1 містить ідею аналізу двохетапної задачі. Теорема стверджує, що розв’язок <math>\ x* двохетапної задачі надає лінійній формі <math>L_{x_1}(x)=M[c-z^*(A,b,x_1)A]x</math> значення, що не перевищує значення форми в точці <math>x_1 \in K</math>. </font> | + | <font size=3> Теорема 1 містить ідею аналізу двохетапної задачі. Теорема стверджує, що розв’язок <math>\ x* </math> двохетапної задачі надає лінійній формі <math>L_{x_1}(x)=M[c-z^*(A,b,x_1)A]x</math> значення, що не перевищує значення форми в точці <math>x_1 \in K</math>. </font> |
<font size=3> Звідси випливає наступний метод аналізу двохетапної задачі. </font> | <font size=3> Звідси випливає наступний метод аналізу двохетапної задачі. </font> | ||
Рядок 46: | Рядок 46: | ||
<font size=3> '''Наведемо економічну інтерпретацію умови''' (1). </font> | <font size=3> '''Наведемо економічну інтерпретацію умови''' (1). </font> | ||
− | <font size=3> Вектор <math>\ z*(A,b,x) </math> – розв’язок задачі, двоїстої до задачі другого етапу, представляє собою вектор оцінок продуктів. що виявилися дефіцитними або надлишковими при інтенсивностях x технологічних способів після того, як були реалізовані технологічна матриця A та вектор попиту b. Ці оцінки визначають вплив величини нев’язки на витрати, пов’язані з найбільш економною ліквідацією нев’язок. Величина </font> | + | <font size=3> Вектор <math>\ z*(A,b,x) </math> – розв’язок задачі, двоїстої до задачі другого етапу, представляє собою вектор оцінок продуктів. що виявилися дефіцитними або надлишковими при інтенсивностях x технологічних способів після того, як були реалізовані технологічна матриця A </math> та вектор попиту b </math>. Ці оцінки визначають вплив величини нев’язки на витрати, пов’язані з найбільш економною ліквідацією нев’язок. Величина </font> |
<math>\sum^{m}_{i=1}{a_{ij}z^{*}_i(A,b,x)}-c_j</math> | <math>\sum^{m}_{i=1}{a_{ij}z^{*}_i(A,b,x)}-c_j</math> | ||
− | <font size=3> вказує на прибутковість експлуатації j-ого технологічного способу з одиничною інтенсивністю у припущенні, що параметри умов задачі реалізувалися як елементи матриці <math>\ A </math> та складові векторів <math>\ b </math>, <math>\ c </math>, а оцінки продуктів пораховані для випадку, коли експлуатація технологічних способів відбувається з інтенсивністю <math>\ x. | + | <font size=3> вказує на прибутковість експлуатації j-ого технологічного способу з одиничною інтенсивністю у припущенні, що параметри умов задачі реалізувалися як елементи матриці <math>\ A </math> та складові векторів <math>\ b </math>, <math>\ c </math>, а оцінки продуктів пораховані для випадку, коли експлуатація технологічних способів відбувається з інтенсивністю <math>\ x </math>. |
Якщо вектор <math>\ x* </math> визначає оптимальний попередній план двохетапної задачі, то сумарний середній прибуток при інтенсивностях <math>\ x* </math> використання технологічних способів виробництва, підрахована в оптимальних оцінках (ті, що відповідають <math>\ x* </math>), не менше сумарного середнього прибутку, порахованого в оптимальних оцінках для будь-якого іншого допустимого плану <math>\ x. </math> </font> | Якщо вектор <math>\ x* </math> визначає оптимальний попередній план двохетапної задачі, то сумарний середній прибуток при інтенсивностях <math>\ x* </math> використання технологічних способів виробництва, підрахована в оптимальних оцінках (ті, що відповідають <math>\ x* </math>), не менше сумарного середнього прибутку, порахованого в оптимальних оцінках для будь-якого іншого допустимого плану <math>\ x. </math> </font> | ||
<font size=3> '''Теорема 2 (необхідна і достатня умова оптимальності плану двохетапної задачі):''' </font> | <font size=3> '''Теорема 2 (необхідна і достатня умова оптимальності плану двохетапної задачі):''' </font> | ||
− | <font size=3> Нехай <math>\ x* </math>- внутрішня точка множини <math>\ K </math>, а цільова функція <math>\ Q(x) </math> детермінованої задачі, еквівалентної двохетапній задачі, диференційована в околі <math>\ x*. Тоді задача, двоїста до задачі другого етапу, має розв’язок <math>\ z*(A,b,x*)</math> такий, що </font> | + | <font size=3> Нехай <math>\ x* </math>- внутрішня точка множини <math>\ K </math>, а цільова функція <math>\ Q(x) </math> детермінованої задачі, еквівалентної двохетапній задачі, диференційована в околі <math>\ x* </math>. Тоді задача, двоїста до задачі другого етапу, має розв’язок <math>\ z*(A,b,x*)</math> такий, що </font> |
<math>c_{x^*}=M[c-z^*(A,b,x^*)A]=0</math> (4) | <math>c_{x^*}=M[c-z^*(A,b,x^*)A]=0</math> (4) | ||
Рядок 69: | Рядок 69: | ||
<font size=3> є опорною гіперплощиною до множини <math>u\geq{Q(x)}</math>в точці <math>~x=x_0</math>. | <font size=3> є опорною гіперплощиною до множини <math>u\geq{Q(x)}</math>в точці <math>~x=x_0</math>. | ||
− | <font size=3> За умовою опукла функція Q(x) диференційована в точці <math>\ x=x* </math>. Відповідно опорна гіперплощина </font> | + | <font size=3> За умовою опукла функція <math>\ Q(x) </math> диференційована в точці <math>\ x=x* </math>. Відповідно опорна гіперплощина </font> |
<math>~u=M[c-z^*(A,b,x^*)A]x+Mz^*(A,b,x^*)b</math> | <math>~u=M[c-z^*(A,b,x^*)A]x+Mz^*(A,b,x^*)b</math> | ||
Рядок 75: | Рядок 75: | ||
<font size=3> дотикається до гіперповерхні <math>\ u=Q(x)</math> в точці <math>\ x=x* </math>. </font> | <font size=3> дотикається до гіперповерхні <math>\ u=Q(x)</math> в точці <math>\ x=x* </math>. </font> | ||
− | <font size=3> Враховуючи, що <math>\ x* </math> - внутрішня точка множини K отримаємо, що рівність </font> | + | <font size=3> Враховуючи, що <math>\ x* </math> - внутрішня точка множини <math>\ K </math> отримаємо, що рівність </font> |
<math>\frac{\partial Q}{\partial x}=\frac{\partial u}{\partial x}=M[c-z^*(A,b,x^*)A]=0</math> | <math>\frac{\partial Q}{\partial x}=\frac{\partial u}{\partial x}=M[c-z^*(A,b,x^*)A]=0</math> |
Версія за 21:32, 22 березня 2014
Сформулюємо необхідні умови оптимальності попереднього плану x двохетапної задачі.
Введемо вектор Неможливо розібрати вираз (невідома помилка): ~c_x=M[c-z^*(A,b,x)A]
та лінійну форму Неможливо розібрати вираз (невідома помилка): L_{x_1}=(c_1,x)=M[c-z^*(A,b,x_1)A]x
Теорема 1 (необхідна умова оптимальності плану двохетапної задачі):
Якщо Неможливо розібрати вираз (невідома помилка): \ x*
- розв’язок двохетапної задачі, то для будь-якого Неможливо розібрати вираз (невідома помилка): x \in K
Неможливо розібрати вираз (невідома помилка): L_x(x^*)\leq{L_x(x)}
(1)
Доведення:
Оскільки Неможливо розібрати вираз (невідома помилка): \ x*
- оптимальний план, а Неможливо розібрати вираз (невідома помилка): \ x – план двохетапної задачі, то Неможливо розібрати вираз (невідома помилка): Q(x^*)\leq{Q(x)}
, тобто Неможливо розібрати вираз (невідома помилка): M\{cx^*+z^*(A,b,x^*)(b-Ax^*)\}\leq{M\{cx+z^*(A,b,x)(b-Ax)\}}
(2)
Крім того
Неможливо розібрати вираз (невідома помилка): M\{z^*(A,b,x^*)(b-Ax^*)\}\geq{M\{z^*(A,b,x)(b-Ax)\}}
(3)
так як Неможливо розібрати вираз (невідома помилка): \ z*(A,b,x*) - оптимальний план задачі, двоїстої до задачі другого етапу при Неможливо розібрати вираз (невідома помилка): \ x=x*. </font> <font size=3> Віднімаючи від (2) (3) приходимо до твердження (1): </font> <math>M(cx^*)+M(z^*(A,b,x^*)b)-M(z^*(A,b,x^*)Ax^*)-M(z^*(A,b,x)Ax^*)+M(z^*(A,b,x)b)\leq{M(cx)+M(z^*(A,b,x)b)-M(z^*(A,b,x)Ax)-M(z^*(A,b,x^*)Ax^*)+M(z^*(A,b,x^*)b)}
Неможливо розібрати вираз (невідома помилка): M(cx^*)-M(z^*(A,b,x)Ax^*)\leq{M(cx)-M(z^*(A,b,x)Ax)}
Неможливо розібрати вираз (невідома помилка): M[c-z^*(A,b,x)A]x^*\leq{M[c-z^*(A,b,x)A]x}
Неможливо розібрати вираз (невідома помилка): L_x(x^*)\leq{L_x(x)}
Теорема доведена.
Теорема 1 містить ідею аналізу двохетапної задачі. Теорема стверджує, що розв’язок Неможливо розібрати вираз (невідома помилка): \ x*
двохетапної задачі надає лінійній формі Неможливо розібрати вираз (невідома помилка): L_{x_1}(x)=M[c-z^*(A,b,x_1)A]x значення, що не перевищує значення форми в точці Неможливо розібрати вираз (невідома помилка): x_1 \in K
.
Звідси випливає наступний метод аналізу двохетапної задачі.
Вибираємо деяку кількість точок Неможливо розібрати вираз (невідома помилка): x_1 \in K
і обчислюємо для них розв’язки Неможливо розібрати вираз (невідома помилка): ~z^*(A,b,x_1) задачі лінійного програмування (3.8)-(3.9), двоїстої до задачі другого етапу.
Для кожного вибраного Неможливо розібрати вираз (невідома помилка): ~x_1
будуємо нерівність типу (1): Неможливо розібрати вираз (невідома помилка): L_{x_1}(x)\leq{L_{x_1}(x_1)}
Отримана таким чином послідовність нерівностей представляє собою систему обмежень, що звужують множину, в якій міститься оптимум, і, відповідно, тих, що скорочують діапазон зміни показника якості розв’язку двохетапної задачі.
Наведемо економічну інтерпретацію умови (1).
Вектор Неможливо розібрати вираз (невідома помилка): \ z*(A,b,x)
– розв’язок задачі, двоїстої до задачі другого етапу, представляє собою вектор оцінок продуктів. що виявилися дефіцитними або надлишковими при інтенсивностях x технологічних способів після того, як були реалізовані технологічна матриця A </math> та вектор попиту b </math>. Ці оцінки визначають вплив величини нев’язки на витрати, пов’язані з найбільш економною ліквідацією нев’язок. Величина
Неможливо розібрати вираз (невідома помилка): \sum^{m}_{i=1}{a_{ij}z^{*}_i(A,b,x)}-c_j
вказує на прибутковість експлуатації j-ого технологічного способу з одиничною інтенсивністю у припущенні, що параметри умов задачі реалізувалися як елементи матриці Неможливо розібрати вираз (невідома помилка): \ A
та складові векторів Неможливо розібрати вираз (невідома помилка): \ b
, Неможливо розібрати вираз (невідома помилка): \ c , а оцінки продуктів пораховані для випадку, коли експлуатація технологічних способів відбувається з інтенсивністю Неможливо розібрати вираз (невідома помилка): \ x . Якщо вектор Неможливо розібрати вираз (невідома помилка): \ x*
визначає оптимальний попередній план двохетапної задачі, то сумарний середній прибуток при інтенсивностях Неможливо розібрати вираз (невідома помилка): \ x* використання технологічних способів виробництва, підрахована в оптимальних оцінках (ті, що відповідають Неможливо розібрати вираз (невідома помилка): \ x*
), не менше сумарного середнього прибутку, порахованого в оптимальних оцінках для будь-якого іншого допустимого плану Неможливо розібрати вираз (невідома помилка): \ x.
Теорема 2 (необхідна і достатня умова оптимальності плану двохетапної задачі):
Нехай Неможливо розібрати вираз (невідома помилка): \ x* - внутрішня точка множини Неможливо розібрати вираз (невідома помилка): \ K , а цільова функція Неможливо розібрати вираз (невідома помилка): \ Q(x)
детермінованої задачі, еквівалентної двохетапній задачі, диференційована в околі Неможливо розібрати вираз (невідома помилка): \ x*
. Тоді задача, двоїста до задачі другого етапу, має розв’язок Неможливо розібрати вираз (невідома помилка): \ z*(A,b,x*)
такий, що
Неможливо розібрати вираз (невідома помилка): c_{x^*}=M[c-z^*(A,b,x^*)A]=0
(4)
тоді і тільки тоді, коли Неможливо розібрати вираз (невідома помилка): \ x*
- розв’язок двохетапної задачі.
Доведення:
Згідно з теоремою, що визначає опорний функціонал до Неможливо розібрати вираз (невідома помилка): \ Q(x) , стверджуємо, що гіперплощина
Неможливо розібрати вираз (невідома помилка): ~u=M[c-z^*(A,b,x_0)A]x+Mz^*(A,b,x_0)b
є опорною гіперплощиною до множини Неможливо розібрати вираз (невідома помилка): u\geq{Q(x)}
в точці Неможливо розібрати вираз (невідома помилка): ~x=x_0
.
За умовою опукла функція Неможливо розібрати вираз (невідома помилка): \ Q(x)
диференційована в точці Неможливо розібрати вираз (невідома помилка): \ x=x*
. Відповідно опорна гіперплощина
Неможливо розібрати вираз (невідома помилка): ~u=M[c-z^*(A,b,x^*)A]x+Mz^*(A,b,x^*)b
дотикається до гіперповерхні Неможливо розібрати вираз (невідома помилка): \ u=Q(x)
в точці Неможливо розібрати вираз (невідома помилка): \ x=x*
.
Враховуючи, що Неможливо розібрати вираз (невідома помилка): \ x*
- внутрішня точка множини Неможливо розібрати вираз (невідома помилка): \ K отримаємо, що рівність
Неможливо розібрати вираз (невідома помилка): \frac{\partial Q}{\partial x}=\frac{\partial u}{\partial x}=M[c-z^*(A,b,x^*)A]=0
є необхідною умовою оптимальності вектора Неможливо розібрати вираз (невідома помилка): \ x* .
Рівність (4) є також і достатньою умовою, оскільки функція Неможливо розібрати вираз (невідома помилка): \ Q(x)
опукла вниз.
Теорема доведена.