Відмінності між версіями «Рівняння Нерозривності»
Рядок 1: | Рядок 1: | ||
[[Файл:Grafik_1.JPG|200px|thumb|left|Елементарний об`єм в 3D]] | [[Файл:Grafik_1.JPG|200px|thumb|left|Елементарний об`єм в 3D]] | ||
Спираючись на <b>закон збереження маси</b>, отримаємо рівняння нерозривності, яке замикає систему рівнянь <b>Ейлера</b>.<br> | Спираючись на <b>закон збереження маси</b>, отримаємо рівняння нерозривності, яке замикає систему рівнянь <b>Ейлера</b>.<br> | ||
− | Припустимо, що рідина рухається без виникнення пустот. Виділимо елементарний об’єм. | + | Припустимо, що рідина рухається без виникнення пустот. Виділимо елементарний об’єм.<br><br> |
− | <math>p\cdot V\cdot dx\cdot dy</math> - маса рідини, яка витікає з грань <math>\textbf{\textit{xz}}</math>. <br> | + | <math>p\cdot V\cdot dx\cdot dy</math> - маса рідини, яка витікає з грань <br><math>\textbf{\textit{xz}}</math>. <br> |
<math>[pV+dy\cdot \frac{\partial(pV)}{dy}]dx\cdot dz</math> - маса рідини, яка витікає з <math>\textbf{\textit{xz}}</math>: <math>\frac{\partial(pV)}{dy}</math> - приріст <math>\textbf{\textit{pV}}</math><br><br> | <math>[pV+dy\cdot \frac{\partial(pV)}{dy}]dx\cdot dz</math> - маса рідини, яка витікає з <math>\textbf{\textit{xz}}</math>: <math>\frac{\partial(pV)}{dy}</math> - приріст <math>\textbf{\textit{pV}}</math><br><br> | ||
Версія за 08:24, 5 червня 2009
Спираючись на закон збереження маси, отримаємо рівняння нерозривності, яке замикає систему рівнянь Ейлера.
Припустимо, що рідина рухається без виникнення пустот. Виділимо елементарний об’єм.
Неможливо розібрати вираз (невідома помилка): p\cdot V\cdot dx\cdot dy
- маса рідини, яка витікає з грань
Неможливо розібрати вираз (невідома помилка): \textbf{\textit{xz}}
.
Неможливо розібрати вираз (невідома помилка): [pV+dy\cdot \frac{\partial(pV)}{dy}]dx\cdot dz
- маса рідини, яка витікає з Неможливо розібрати вираз (невідома помилка): \textbf{\textit{xz}}
- Неможливо розібрати вираз (невідома помилка): \frac{\partial(pV)}{dy}
- приріст Неможливо розібрати вираз (невідома помилка): \textbf{\textit{pV}}
Вздовж осі Неможливо розібрати вираз (невідома помилка): \textbf{\textit{Oy}}
маса рідини змінилася на величину:
Неможливо розібрати вираз (невідома помилка): \begin{cases} \frac{\partial(pV)}{dy}dx\cdot dy\cdot dz\\ \frac{\partial(pW)}{dz}dx\cdot dy\cdot dz\\ \frac{\partial(pU)}{dx}dx\cdot dy\cdot dz\end{cases}
Приріст маси:
Неможливо розібрати вираз (невідома помилка): [\frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}]dx\cdot dy\cdot dz
З іншого боку, приріст маси може отриматись за рахунок змінної густини
Неможливо розібрати вираз (невідома помилка): dm=-\frac{\partial p}{\partial t}dx\cdot dy\cdot dz
Отже, можна отримати рівняння нерозривності у одному з виглядів
Неможливо розібрати вираз (невідома помилка): \frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}=-\frac{\partial p}{\partial t}
Неможливо розібрати вираз (невідома помилка): \frac{\partial p}{\partial t}+div\quad p\overrightarrow{V}=0
за умови, що Неможливо розібрати вираз (невідома помилка): p\neq const
.
Припустимо Неможливо розібрати вираз (невідома помилка): p=const
, тоді рівняння нерозривності
Неможливо розібрати вираз (невідома помилка): div \vec{V}=0
Неможливо розібрати вираз (невідома помилка): \frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}=0
Це рівняння доповнює систему рівнянь Ейлера до замкнутої системи чотирьох рівнянь відносно чотирьох невідомих функцій.