Відмінності між версіями «Рівняння Нерозривності»
Рядок 10: | Рядок 10: | ||
<math>\begin{cases} \frac{\partial(pV)}{dy}dx\cdot dy\cdot dz\\ \frac{\partial(pW)}{dz}dx\cdot dy\cdot dz\\ \frac{\partial(pU)}{dx}dx\cdot dy\cdot dz\end{cases}</math><br> | <math>\begin{cases} \frac{\partial(pV)}{dy}dx\cdot dy\cdot dz\\ \frac{\partial(pW)}{dz}dx\cdot dy\cdot dz\\ \frac{\partial(pU)}{dx}dx\cdot dy\cdot dz\end{cases}</math><br> | ||
Приріст маси:<br> | Приріст маси:<br> | ||
− | <math>[\frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}]dx\cdot dy\cdot dz</math> | + | <math>[\frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}]dx\cdot dy\cdot dz</math><br> |
− | З іншого боку, приріст маси може отриматись за рахунок змінної густини | + | З іншого боку, приріст маси може отриматись за рахунок змінної густини<br> |
− | <math>dm=-\frac{\partial p}{\partial t}dx\cdot dy\cdot dz</math> | + | <math>dm=-\frac{\partial p}{\partial t}dx\cdot dy\cdot dz</math><br> |
− | Отже, можна отримати рівняння нерозривності у одному з виглядів | + | Отже, можна отримати рівняння нерозривності у одному з виглядів<br> |
− | <math>\frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}=-\frac{\partial p}{\partial t}</math> | + | <math>\frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}=-\frac{\partial p}{\partial t}</math><br> |
− | <math>frac{\partial p}{\partial t}+div\quad p\overrightarrow{V}=0</math> | + | <math>frac{\partial p}{\partial t}+div\quad p\overrightarrow{V}=0</math><br> |
− | за умови, що <math>p\neq const</math>. | + | за умови, що <math>p\neq const</math>.<br> |
Припустимо | Припустимо | ||
==Тести== | ==Тести== |
Версія за 08:00, 5 червня 2009
Спираючись на закон збереження маси, отримаємо рівняння нерозривності, яке замикає систему рівнянь Ейлера.
Припустимо, що рідина рухається без виникнення пустот. Виділимо елементарний об’єм.
Неможливо розібрати вираз (невідома помилка): p\cdot V\cdot dx\cdot dy
- маса рідини, яка витікає з грань Неможливо розібрати вираз (невідома помилка): \textbf{\textit{xz}}
.
Неможливо розібрати вираз (невідома помилка): [pV+dy\cdot \frac{\partial(pV)}{dy}]dx\cdot dz
- маса рідини, яка витікає з Неможливо розібрати вираз (невідома помилка): \textbf{\textit{xz}}
- Неможливо розібрати вираз (невідома помилка): \frac{\partial(pV)}{dy}
- приріст Неможливо розібрати вираз (невідома помилка): \textbf{\textit{pV}}
Вздовж осі Неможливо розібрати вираз (невідома помилка): \textbf{\textit{Oy}}
маса рідини змінилася на величину:
Неможливо розібрати вираз (невідома помилка): \begin{cases} \frac{\partial(pV)}{dy}dx\cdot dy\cdot dz\\ \frac{\partial(pW)}{dz}dx\cdot dy\cdot dz\\ \frac{\partial(pU)}{dx}dx\cdot dy\cdot dz\end{cases}
Приріст маси:
Неможливо розібрати вираз (невідома помилка): [\frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}]dx\cdot dy\cdot dz
З іншого боку, приріст маси може отриматись за рахунок змінної густини
Неможливо розібрати вираз (невідома помилка): dm=-\frac{\partial p}{\partial t}dx\cdot dy\cdot dz
Отже, можна отримати рівняння нерозривності у одному з виглядів
Неможливо розібрати вираз (невідома помилка): \frac{\partial(pU)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(pW)}{dz}=-\frac{\partial p}{\partial t}
Неможливо розібрати вираз (невідома помилка): frac{\partial p}{\partial t}+div\quad p\overrightarrow{V}=0
за умови, що Неможливо розібрати вираз (невідома помилка): p\neq const
.
Припустимо