Відмінності між версіями «Особливості виробництва процесорів. СПК»

Матеріал з Вікі ЦДУ
Перейти до: навігація, пошук
 
(не показана одна проміжна версія 2 учасників)
Рядок 1: Рядок 1:
Виробництво процесорів - дуже складна технологічна задача, вирішення якої відбувається в декілька етапів.
+
{{Меню для довідника користувача НОП}}
 
{|align="right"
 
{|align="right"
 
  |-valign="bottom"
 
  |-valign="bottom"
  |[[Файл:08.jpg|мини|200пкс|Виготовлення процесорів]]
+
  |[[Файл:08.jpg|мини|250пкс|Виготовлення процесорів]]
 
  |}
 
  |}
  
 +
==Виробництво процесорів==
 +
Виробництво процесорів - дуже складна технологічна задача, вирішення якої відбувається в декілька етапів.Виробництво напівпровідникового кристала набагато більш ресурсомістка, ніж, скажімо, зведення багатоповерхового будинку або організація найбільшого виставкового заходу. Однак завдяки масовому випуску CPU в грошовому еквіваленті ми цього не помічаємо, та й рідко хто замислюється про всю грандіозності елементів, що посідають таке чільне місце всередині системного блоку.
  
Кремній є основним хімічним елементом,необхідним для створення сучасних процесорів.                   
+
==Етапне виробництво процесорів==
На початковій стадії виробництва необпалений полікристалічний кремній нагрівається до 1420 ° C. Після калібрування монокристала і його дослідження рентгеноскопічними і хімічними методами, він поміщається в спеціальний апарат для різання кремнію на пластини (підкладки).
+
Наприкінці даного процесу з монокристалу виходить безліч пластин однакового діаметра і товщини. Для вирівнювання пластин застосовуються шліфувальні та полірувальні машини.
+
1.Кремній проходить багатоступеневий процес очищення: сировина для мікросхем не може містити більше домішок, ніж один чужорідний атом на мільярд.
  
Для створення ділянок інтегральної мікросхеми застосовується метод фотолітографії. На поверхню дисків (підкладок) наноситься світлочутливий хімічний реактив. При впливі ультрафіолетового випромінювання він застигає. Ультрафіолет потрапляє на реактив через заздалегідь підготовлені маски.
+
2 Кремній розплавляють в спеціальній ємності і, опустивши всередину постійно охолоджуваний обертається стрижень, «намотують» на нього завдяки силам поверхневого натягу речовина.
В кінці цього складного процесу на кремнієвій підкладці розташовується до 1000 мікрочіпів (ядер) і близько 4 мільярдів компонентів мікросхем. На кінцевому етапі виробництва готові ядра з'єднують з процесорної установкою.
+
 
 +
3 У підсумку виходять поздовжні заготовки (монокристали) круглого перерізу, кожна масою близько 100 кг.
 +
 
 +
4 Заготівлю нарізають на окремі кремнієві диски - пластини, на яких будуть розташовані сотні мікропроцесорів. Для цих цілей використовуються верстати з алмазними ріжучими дисками або проволочно-абразивні установки.
 +
 
 +
5 Підкладки полірують до дзеркального блиску, щоб усунути всі дефекти на поверхні. Наступний крок - нанесення найтоншого фотополімерного шару.
 +
 
 +
6 Оброблена підкладка піддається впливу жорсткого ультрафіолетового випромінювання. У фотополимерном шарі відбувається хімічна реакція: світло, проходячи через численні трафарети, повторює малюнки шарів CPU.
 +
 
 +
7 Реальний розмір зображення, що наноситься в кілька разів менше власне трафарету.
 +
 
 +
8 Ділянки, «протруєне» випромінюванням, вимиваються. На кремнієвій підкладці виходить малюнок, який потім піддається закріпленню.
 +
 
 +
9 Наступний етап виготовлення одного шару - іонізація, в процесі якої вільні від полімеру ділянки кремнію бомбардуються іонами.
 +
 
 +
10 В місцях їх потрапляння змінюються властивості електричної провідності.
 +
 
 +
11 Залишився полімер видаляють, і транзистор майже готовий. В ізолюючих шарах робляться отвори, які завдяки хімічній реакції заповнюються атомами міді, використовуваними в якості контактів.
 +
 
 +
12 З'єднання транзисторів являє собою багаторівневу розведення. Якщо поглянути в мікроскоп, на кристалі можна помітити безліч металевих провідників і розміщених між ними атомів кремнію або його сучасних замінників.
 +
 
 +
13 Частина готової підкладки проходить перший тест на функціональність. На цьому етапі на кожен з вибраних транзисторів подається струм, і автоматизована система перевіряє параметри роботи напівпровідника.
 +
 
 +
14 Підкладка з допомогою найтонших ріжучих кіл розрізається на окремі частини.
 +
 
 +
15 Придатні кристали, отримані в результаті цієї операції, що використовуються у виробництві процесорів, а браковані відправляються у відходи.
 +
 
 +
16 Окремий кристал, з якого буде зроблений процесор, поміщають між підставою (підкладкою) CPU і теплорас-пределительной кришкою і «упаковують».
 +
 
 +
17 В ході остаточного тестування готові процесори перевіряються на відповідність необхідним параметрам і лише потім сортуються. На підставі отриманих даних у них прошивається мікрокод, що дозволяє системі належним чином визначити CPU.
 +
 
 +
18 Готові пристрої упаковуються і спрямовуються на ринок.
 +
 
 +
 
 +
 
 +
[[Файл:111111111.jpg|border|Перший етап|200px]]  [[Файл:2222222.jpg|border|Другий етап|200px]]  [[Файл:knbfvbvsobv.jpg|border|Другий етап|200px]] 
 +
 
 +
  [[Файл:4444444.jpg|border|Четвертий етап|200px]]  [[Файл:jhhviig.jpg|border|П`ятий етап|200px]] [[Файл:kgnrel.jpg|border|Шостий етап|200px]]
 +
 
 +
[[Файл:jveooe.jpg|border|Сьомий етап|200px]]  [[Файл:vdndbdj.jpg|border|Восьмий етап|200px]]
 +
 
 +
 +
===Енергоспоживання процесорів===
 +
 
 +
З технологією виготовлення процесора тісно пов'язано і його енергоспоживання .
 +
 
 +
Перші процесори архітектури  x86  споживали мізерну (за сучасними мірками) кількість енергії , що становить частки вата . Збільшення кількості  транзисторів і підвищення тактової частоти процесорів привело до істотного зростання даного параметра. Найбільш продуктивні моделі споживають до 130 і більше ват. Фактор енергоспоживання , несуттєвий на перших порах , зараз чинить серйозний вплив на еволюцію процесорів:
 +
 
 +
1.Вдосконалення технології виробництва для зменшення споживання , пошук нових матеріалів для зниження струмів витоку , зниження напруги живлення ядра процесора;
 +
 
 +
2.Поява сокетів (роз'ємів для процесорів) з великим числом контактів (більше 1000 ), більшість яких призначено для живлення процесора. Так у процесорів для популярного сокета LGA775 число контактів основного живлення становить 464 штуки (близько 60 % від загальної кількості) ;
 +
 
 +
3.Зміна компонування процесорів. Кристал процесора перемістився з внутрішньої на зовнішню сторону , для кращого відведення тепла до радіатора системи охолодження;
 +
 
 +
4.Інтеграція в кристал температурних датчиків і системи захисту від перегріву , знижує частоту процесора або взагалі зупиняє його при неприпустиме збільшення температури;
 +
 
 +
5.Поява в новітніх процесорах інтелектуальних систем , динамічно змінюють напруга живлення , частоту окремих блоків і ядер процесора , і вимикаючих невикористовувані блоки і ядра;
 +
 
 +
6.Поява енергозберігаючих режимів для «засипання » процесора , при низькому навантаженні .
 +
 
 +
===Робоча температура процесора===
 +
 
 +
Ще один параметр ЦП - максимально допустима температура поверхні процесора , при якій можлива нормальна робота (від 54.8 до 100 С). Температура процесора залежить від його завантаженості і від якості тепловідведення. У холостому режимі і при нормальному охолодженні температура процесора знаходиться в межах 25 -40С , при високій завантаженості вона може досягати 60-65 С. При температурі, що перевищує максимально допустиму виробником , немає гарантії , що процесор буде функціонувати нормально . У таких випадках можливі помилки в роботі програм або зависання комп'ютера .

Поточна версія на 23:40, 27 грудня 2013

Довідник Список використаних джерел Список учасників НОП
Виготовлення процесорів

Виробництво процесорів

Виробництво процесорів - дуже складна технологічна задача, вирішення якої відбувається в декілька етапів.Виробництво напівпровідникового кристала набагато більш ресурсомістка, ніж, скажімо, зведення багатоповерхового будинку або організація найбільшого виставкового заходу. Однак завдяки масовому випуску CPU в грошовому еквіваленті ми цього не помічаємо, та й рідко хто замислюється про всю грандіозності елементів, що посідають таке чільне місце всередині системного блоку.

Етапне виробництво процесорів

1.Кремній проходить багатоступеневий процес очищення: сировина для мікросхем не може містити більше домішок, ніж один чужорідний атом на мільярд.

2 Кремній розплавляють в спеціальній ємності і, опустивши всередину постійно охолоджуваний обертається стрижень, «намотують» на нього завдяки силам поверхневого натягу речовина.

3 У підсумку виходять поздовжні заготовки (монокристали) круглого перерізу, кожна масою близько 100 кг.

4 Заготівлю нарізають на окремі кремнієві диски - пластини, на яких будуть розташовані сотні мікропроцесорів. Для цих цілей використовуються верстати з алмазними ріжучими дисками або проволочно-абразивні установки.

5 Підкладки полірують до дзеркального блиску, щоб усунути всі дефекти на поверхні. Наступний крок - нанесення найтоншого фотополімерного шару.

6 Оброблена підкладка піддається впливу жорсткого ультрафіолетового випромінювання. У фотополимерном шарі відбувається хімічна реакція: світло, проходячи через численні трафарети, повторює малюнки шарів CPU.

7 Реальний розмір зображення, що наноситься в кілька разів менше власне трафарету.

8 Ділянки, «протруєне» випромінюванням, вимиваються. На кремнієвій підкладці виходить малюнок, який потім піддається закріпленню.

9 Наступний етап виготовлення одного шару - іонізація, в процесі якої вільні від полімеру ділянки кремнію бомбардуються іонами.

10 В місцях їх потрапляння змінюються властивості електричної провідності.

11 Залишився полімер видаляють, і транзистор майже готовий. В ізолюючих шарах робляться отвори, які завдяки хімічній реакції заповнюються атомами міді, використовуваними в якості контактів.

12 З'єднання транзисторів являє собою багаторівневу розведення. Якщо поглянути в мікроскоп, на кристалі можна помітити безліч металевих провідників і розміщених між ними атомів кремнію або його сучасних замінників.

13 Частина готової підкладки проходить перший тест на функціональність. На цьому етапі на кожен з вибраних транзисторів подається струм, і автоматизована система перевіряє параметри роботи напівпровідника.

14 Підкладка з допомогою найтонших ріжучих кіл розрізається на окремі частини.

15 Придатні кристали, отримані в результаті цієї операції, що використовуються у виробництві процесорів, а браковані відправляються у відходи.

16 Окремий кристал, з якого буде зроблений процесор, поміщають між підставою (підкладкою) CPU і теплорас-пределительной кришкою і «упаковують».

17 В ході остаточного тестування готові процесори перевіряються на відповідність необхідним параметрам і лише потім сортуються. На підставі отриманих даних у них прошивається мікрокод, що дозволяє системі належним чином визначити CPU.

18 Готові пристрої упаковуються і спрямовуються на ринок.


Перший етап  Другий етап   Другий етап  
 Четвертий етап  П`ятий етап Шостий етап
Сьомий етап   Восьмий етап


Енергоспоживання процесорів

З технологією виготовлення процесора тісно пов'язано і його енергоспоживання .

Перші процесори архітектури x86 споживали мізерну (за сучасними мірками) кількість енергії , що становить частки вата . Збільшення кількості транзисторів і підвищення тактової частоти процесорів привело до істотного зростання даного параметра. Найбільш продуктивні моделі споживають до 130 і більше ват. Фактор енергоспоживання , несуттєвий на перших порах , зараз чинить серйозний вплив на еволюцію процесорів:

1.Вдосконалення технології виробництва для зменшення споживання , пошук нових матеріалів для зниження струмів витоку , зниження напруги живлення ядра процесора;

2.Поява сокетів (роз'ємів для процесорів) з великим числом контактів (більше 1000 ), більшість яких призначено для живлення процесора. Так у процесорів для популярного сокета LGA775 число контактів основного живлення становить 464 штуки (близько 60 % від загальної кількості) ;

3.Зміна компонування процесорів. Кристал процесора перемістився з внутрішньої на зовнішню сторону , для кращого відведення тепла до радіатора системи охолодження;

4.Інтеграція в кристал температурних датчиків і системи захисту від перегріву , знижує частоту процесора або взагалі зупиняє його при неприпустиме збільшення температури;

5.Поява в новітніх процесорах інтелектуальних систем , динамічно змінюють напруга живлення , частоту окремих блоків і ядер процесора , і вимикаючих невикористовувані блоки і ядра;

6.Поява енергозберігаючих режимів для «засипання » процесора , при низькому навантаженні .

Робоча температура процесора

Ще один параметр ЦП - максимально допустима температура поверхні процесора , при якій можлива нормальна робота (від 54.8 до 100 С). Температура процесора залежить від його завантаженості і від якості тепловідведення. У холостому режимі і при нормальному охолодженні температура процесора знаходиться в межах 25 -40С , при високій завантаженості вона може досягати 60-65 С. При температурі, що перевищує максимально допустиму виробником , немає гарантії , що процесор буде функціонувати нормально . У таких випадках можливі помилки в роботі програм або зависання комп'ютера .